
MATHEMATICS OF COMPUTATION 
VOLUME 49, NUMBER 180 
OCTOBER 1987, PAGES 523-542 

Numerical Solution of Stochastic Differential 
Equations with Constant Diffusion Coefficients 

By Chien-Cheng Chang 

Abstract. We present Runge-Kutta methods of high accuracy for stochastic differential 
equations with constant diffusion coefficients. We analyze L2 convergence of these methods 
and present convergence proofs. For scalar equations a second-order method is derived, and 
for systems a method of order one-and-one-half is derived. We further consider a variance 
reduction technique based on Hermite expansions for evaluating expectations of functions of 
sample solutions. Numerical examples in two dimensions are presented. 

1. Introduction. Recently, the numerical solution of stochastic differential equa- 
tions has attracted the attention of researchers in many fields, both in probability 
theory and in its applications. Most of the methods that have been developed are of 
Taylor series type, in which one needs to evaluate derivatives, and thus has 
difficulties in applications to practical problems. Therefore, we are especially inter- 
ested in methods of Runge-Kutta type, i.e., one-step methods which require no 
approximation to the derivatives of the functions involved. In this paper we consider 
the d-dimensional stochastic differential equation 

(1-1) dX = f(X) dt + vdWt, 0 < t < T. 

where v > 0 is a constant, f = f(x) is a sufficiently smooth function satisfying a 
Lipschitz condition in x, and Wt (t > 0) is a d-dimensional Wiener process (Brownian 
motion). This equation can be interpreted either in the sense of Ito or in that of 
Stratonovich [1]. Our results extend readily to the case where f depends also on the 
time by introducing t as an additional dependent variable and imagining that the 
associated component of the Wiener process is zero. 

Equation (1-1) occurs in the study of several physical phenomena, e.g., in the 
motion of a particle in the collision theory of chemical reactions [2], in blood clotting 
[11], in stellar dynamics [3], signal modeling in communication systems [14], and the 
stochastic behavior of fluid particles in turbulence theory [8]. 

We develop and analyze high-accuracy methods of constructing sample solutions 
of (1-1), and we further consider a variance reduction technique for evaluating 
expectations of functions of these sample solutions. Consider the partition of the 
interval [0, T] given by 

Ji = (o=to . .t . , t.n+1 = tn + h,..., tN = T). 
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Let E denote expectation and II i the two-norm in Rd space. We say that a random 
variable Z is of order p in the Lq sense if there is a constant C such that 

( ElZllq)ll/q _<CA 

for all sufficiently small h > 0, and that a numerical scheme has order p in the Lq 
sense if X') - X(tn) is of order p in the Lq sense, where X') and X(tn) are, 
respectively, the numerical and the exact solution of the stochastic differential 
equation at time tn. In the present paper we adopt an L2-norm analysis because it 
can best exhibit the nonanticipating property [1] of the solutions of stochastic 
differential equations. Our main results are a second-order scheme for scalar 
equations, 

p(n) = 
p, 

- /32 

(T) Q(n) - X(n) + 2hf (X (n)) + ?rh p, 

X(nl) - X(1) + vAW(n) ? 'h [f(Q(n) + h p(n)) + f(Q(n) -hp(n))]; 

and a scheme of order one-and-one-half for systems, 

Q(n) = X(n) + 4hf(X(n)), 

(5) Q*(n) = X(") + hf (X(n)) + 3 
v/iaa, 

X(n+l) =X(n) + PW(n) + 3h [f(Q(n)) + 2 f(Q*(n))]. 

Here, AW n) = Wt= -Wt, and 9 are /3 are defined in (3-4) and (5-3) as integrals of 
increments of the Wiener process over the nth subinterval. Scheme (T) does not give 
second-order accuracy when applied to systems [4]. The precise statements of the 
conditions under which these orders of convergence are proved are contained in 
Theorem 1 of Section 3 and Theorem 3 of Section 5, respectively. 

Our analysis is based on Taylor expansion of the solution, followed by derivation 
of an approximation formula whose Taylor expansion coincides to some order with 
that of the solution. This is similar to the method used by Chorin [6] in the 
approximation of Wiener integrals. 

In practice, a stochastic scheme with high accuracy would still be less competitive 
without a substantial reduction of statistical errors in evaluating expectations of 
functions of sample solutions. We discuss, in Section 6, a variance reduction 
technique, suggested by Chorin [51, based on Hermite polynomial expansions, and 
its application to stochastic differential equations. To effect the reduction, we make 
use of the nonanticipating property of the solutions and apply Chorin's technique to 
the successive differences of the functions concerned at each time step. In Section 7 
we give two two-dimensional numerical examples. 

The difficulty in solving the stochastic differential equation (1-1) accurately arises 
from the nondifferentiability of the Wiener process Wt. To take a closer look at this 
difficulty, we define the variable 

Y(t) = X(t) - PWt 0 <, t -<- T. 

Equation (1-1) then reduces to an infinite set of ordinary differential equations, 

(1-2) dY f(Y + _wt) 0 < t < T. 
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for almost every path of the Wiener process Wt. The theory of ordinary differential 
equations assures the existence of the solutions Y(t) of these equations, which are 
only once differentiable as functions of t. However, since the error estimates of 
high-order accuracy methods involve high-order derivatives of Y(t), it is not clear 
how one is able to obtain methods with high-order accuracy for solving (1-2) or 
(1-1). 

Historically, let us recall some numerical methods for solving the stochastic 
differential equation (1-1). The most commonly used methods are splitting schemes 
(see Chorin [7], [8], Franklin [12]). For these schemes, at each time step one 
approximates for each sample path of the Wiener process the differential equation 

(1-3) dX = f(X) dt 

by a method for solving ordinary differential equations, and then one adds to the 
approximate solution an independent increment of the Wiener process vW,. The 
simplest example of a splitting scheme is Euler's method which is given by 

(El) = X ?n) + hf(X(n)) + VAW(n). 

Another example of a splitting scheme, based on the mid-point rule, is 

(1-4) X(n+l)- X(n) + hf(X(n) + lhf(X(n))) + VAW(n). 

These splitting schemes are only first-order accurate in the L2 sense, no matter how 
accurately one solves the nonrandom part (1-3). This will be clear from the analysis 
for the scheme (1-4) in Section 2. To obtain more accurate numerical schemes, 
McShane [16] has extended the idea of Runge-Kutta methods for ordinary differen- 
tial equations to stochastic differential equations. For (1-1), he proposed (see also 
Fahrmeir [10]) 

Q(n) = X(n) + hf(X(n)) + pAW (n), 

X(n +) = x(n) + ?AW (n) + 2 h [f(X(n)) + f(Q(n))]. 

However, this scheme has the same order of accuracy as the splitting scheme 
mentioned above. In fact, based on a one-step error analysis, RUmelin [23] has 
shown that, if at each time step only the information AW(n) is used, then for a wide 
class of Runge-Kutta methods one can have at best a first-order accuracy. In this 
paper we do not discuss the Taylor series method, referring instead to Rao et al. [22], 
Mil'shtein [18], [19], Platen [20] and Platen and Wagner [21] for its development. In 
most of these references, the authors work on general Ito stochastic differential 
equations. In principle, by using an analysis paralleling that of Section 2, we can 
derive methods of Taylor series type with arbitrary order of accuracy for Eq. (1-1). 

The paper is organized as follows. In Section 2 we analyze a splitting scheme 
based on the mid-point rule. In Section 3 we derive the second-order Runge-Kutta 
method (T); and in Section 4 we prove its convergence. In Section 5 we prove the 
convergence of the method (S). Section 6 is devoted to the study of variance 
reduction. Finally, we present numerical examples in Section 7. 

2. Analysis of a Splitting Scheme Based on the Mid-Point Rule. For v = 0, the 
scheme (1-4) is the Runge-Kutta method based on the mid-point rule for the 
equation (1-1) with v = 0; it has second-order accuracy (see Gear [13]). However, in 
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this section, we show that if v P 0, the scheme (1-4) is not second-order in the Lp 
sense for any p > 2 for the stochastic differential equation (1-1). Without loss of 
generality, we may assume that v = 1 and consider the stochastic differential 
equation 

(2-1) dX= f(X)dt + dW,, 0 < t < T; 

and the splitting scheme 

(2-2) X(n-+) = X(n) + AW(n) + hf(X(n) + Ihf(X(n))). 

In analogy with the analysis for ordinary differential equations, we analyze the local 
truncation error Dn of the above scheme, which is defined by the equation 

(2-3) X(tn+J) = X(tn) + ?W(n) + hf(X(tn) + Ihf(X(tn))) - Dn 

For simplicity, we denote by AW, the increment W - W, and we further define, for 
each subinterval [tn tn+ I], the random variable 

(2-4) Y(t) = X(t)-AJVw-, t < t < tn+I = tn + h. 

We note that Y(t) is defined only for tn < t < tn + h and that 

(2-5) Y(tn) = X(tn). 

Substituting the definition in (2-4) into (2-1) and (2-3), we obtain 

(2-6) dY = f(Y + Wt), tn < t <tn+1 = tn + h, dt 

and in view of (2-5), 

(2-7) -D= Y(t1) - Y(tn) - hf(Y(tn) + 'hf(Y(tn))). 

For convenience of analysis we rewrite -Dn in integral form. Integrating Eq. (2-6) 
from t,1 to tl + h and substituting into (2-7), we obtain 

(2-8) -D,, = f [f (Y(s) + AWs )- (Y(tn) + 2hf(Y(t)))] ds. 

With D,, in this form, further analysis can be made because of the differentiability of 
the function f. In the subsequent discussion, we will analyze Dn in the L2 sense, for 
the reason stated in the introduction. For this, we make the following assumption: 

(2-9) 
a 
3f(x) arebounded, 0 < 5. 

As indicated in [23], this boundedness assumption is not a serious restriction, since 
actual computation requires weaker conditions on f. In the following, 0(hP) will be 
employed to denote a stochastic quantity of order p in the L2 sense. In this 
connection, we can easily see that (i) (AWs)P is O(h05p), and (ii) (Y(s) - Y(tn))P is 
O(h P); indeed, 

Y(s) - Y(tn) = (s - tn)fx(Y(tn)) + O(h' 5). 

This suggests that we write the first integrand in (2-8) in the form 
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Expanding the right-hand side in a Taylor series about Y(t"), and taking into 
consideration (i) and (ii), we obtain 

f (Y(s) + AWS) = j (Y(tj)) + fx(Y(tn))(Y(S) - Y(tj) + AWl) 

(2-10) ?2f~x(Y(tn))(2(Y(s) - Y(tn))AWs + s 

6 fXxx(Y(tn))AxWs' + 0(h2). 

We further expand the second integrand in (2-8) in a Taylor series about Y(tn) and 
obtain 

(2-11) f(Y(tn7) + 2hf(X(tn))) = f(Y(tn)) + 2hfx(Y(tn))f(Y(tn)) + 0(h 2). 

Substituting (2-10) and (2-11) into Dn of (2-8), we can, after some cancellation, write 

Dn in increasing powers of AWj: 

-D,, = fx(Y(tn ))ft ?h AJ'Vds ? -fnx(Y( t) )flnh /W2ds- v 

or, in view of (2-5), 

(2-12) -D,1 = f (X(tn)) fn AWds ? {fXX(X(tn)) f R?AWn2ds - 
tfl n 

where we keep in -Dn only the two terms of the expansion (2-11) of leading order in 

AWs, and group all the other terms in the remainder 

-Rn,= fx(Y(tn)) h [(Y(s) - Y(tn) - ?hf(Y(tn)))] ds 

(2-13) +fxx(Y(tn)) fn;h (Y(s) - Y(tn)) AWs ds 

tfl + LW3d+0(3). 

We now want to show that the remainder -R. is 0(h25). Recalling (i) and (ii), we 
can see that the second and third terms in the right-hand side of (2-13) are 0(h25). 
That the first term is 0(h 2.5) follows from the following calculations: 

ft+h [ Y(S) - Y(tn) -2 hf (Y(tn))] ds 
tfl 

= f t7+ JS[f (Y(r) + AWr) -f (Y(tn))] drds 

= f|lh JS[ fx(y(tn)zWr) + o(h)] drds 

= fi ( Y(t ) )f|tn f| AVWr drds + 0(h 3). 

With this expression, (2-5) and (ii), -Rn can be written in terms of increments of Wt: 

-R 
=f2(X(tn)) 

n f A Wr dr ds 

(2-14) +?( X(tn))fxx( X(tp)) tlh (S - tn)AWs ds 

+ ? fx(X(to ))f| h Ws3ds ?+ 0(h 3). 
6fXXX(X~~~~~~t?~1) 
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For the sake of brevity, we introduce the random variables y, 8 and X by 

h2 5y ftn (s - t)AWs ds, h2A58-fnh f iWrdrsds 
(2-15) n 

5pW 

h2' jT?h ~W3 ds, 

suppressing time-dependence for convenience. From these definitions it is clear that 
the variables -y,8, X are all of order zero in the L2 sense. Then the expression (2-14) 
can be abbreviated as 

(2-16) -Rn= h25{f7 ? +ffY ? 6fxXXT} + 0(h3), 

where all the functions are evaluated at X(tn). Thus, together with (2-12), we see 
that Dn2 is 0(h3), and therefore (2-2) is at best of order 1 in the L2 sense, and hence 
in the Lp sense for p > 2, by Liapunov's inequality [9]. Indeed, Scheme (2-2) is a 
first-order method, as can be shown [4]. The expressions of -Dn in (2-12) and -Rn in 
in (2-14) are illuminating in the sense that, for each term therein, the integral part (of 
increments of Wt) is independent of the preceding product of functions evaluated at 
X(tn). This is a consequence of the nonanticipating property of the solutions of 
stochastic differential equations [1]. 

Remark. In the above discussion we often encountered expressions of half-integral 
order, due to the appearance of AW, to an odd power. Recalling the nonanticipating 
property of the solutions of stochastic differential equations, we conclude that the 
expectations of the leading terms in these expressions vanish. We will use this fact 
repeatedly in the later development. 

3. A Second-Order Runge-Kutta Method. We remarked in the introduction that a 
splitting scheme can at best have first-order accuracy in the L2 sense. However, in 
this section we will show that by interlacing the function f and the Wiener process, 
it is possible to get Runge-Kutta methods of higher accuracy. As a preliminary step, 
the analysis of the splitting scheme (2-2) with the local truncation error Dn in (2-12) 
suggests that we consider the following Taylor series method: 

Q(n) = X(n) + 1hf (X ()) 

(3-1) X(n +) = X () + AW (n) + hf(Q(n)) 

?fx(X(n))ftnh i~AWjds 

+ 
2f 

x(x'nfth AXW2ds. The local truncation error of the scheme is given by Rn in (2-16), i.e., the exact 
solution X = X(t) of Eq. (2-1) satisfies 

X(tn?1) = X(t') + XW(n) + hf(Q(tn)) 

( 3-2) +?fx ( X( tn) )ftn | AWs ds + 4fxx(X(tn)) J|h "nW7s -R 
tn n 

where we define 

(3-3) Q(tN) = X(tn) + 4hf(X(tn))- 

Since R,1 is of order 2.5 in the L2, and thus in the L sense, we would expect that 
Scheme (3-1) has order 1.5 in the L1 sense due to the accumulation of the local 
truncation errors. However. an L2 analysis shows that the scheme considered is in 
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fact a second-order method. Nevertheless, our analysis will not be made directly on 
the scheme (3-1). This scheme is an intermediate step which leads to a more 
satisfactory method of Runge-Kutta type. Before we go further, let us define, for the 
sake of brevity, random variables /3 and 0 by 

(3-4) h'5.1 = j A|h LW ds, h20 _ ffl WdS, 

where, again, the time-dependence is suppressed. Clearly, /3 and 0 are all of order 
zero in the L2 sense, and (3-1) can be rewritten as 

(3-5) -(n) = X(n) + {hf (X(')) 

-(n+ 1 (n) + 'AW(n) + hf(Q(n)) + h'53fX(X (n) + 2f ) 

which has a more convenient form to develop into a Runge-Kutta method. First, we 
add a term involving /3 to Q(n) so that the first derivative term in X (n + 1) will appear 
implicitly. Observe that 

hf (Q('Z) + vEZ;:) = hf (Q(n)) + h'5/fx(X(n)) + Xh2/32fXX(X~n)) + 0(h25), 

which leads us to consider the following scheme: 

(3-6) Qf(ll) = X + hf (X(n)) + Ahs, 
X (n+-1) = Xn + A W(n) + hf(Q'(n)) + 2h2(O _ - 2)f 

Its local truncation error V,/ is defined by 

(3-7) X(t*,1?1) = x(tn) + AWfn) + hf (Q'(tj)) + 2h2(0- _2)fXX(X(t,))- 

where 

(3-8) Q'(tn1) = Q(tn) + v?13 = X(tJ,) + 2hf(X(tn)) + h/3. 

Here we have been careful to make the local truncation error V*, of Scheme (3-6) 
have the same order (in the L2 sense) as Rn of Scheme (3-1) (or (3-5)). This can be 
seen by analyzing V*, further. As a starting point for seeing that Vn and Rn are of the 
same order, we carry out the Taylor expansion: 

hf(Q(tn)) = hf(Q(tn) + A:/3) 

(3-9) = hf(Q(tn)) + h1'5ffx (Q(tj)) + 2h2f32fx((Q(tj)) 
+ 6 h 5 xxx(Q(tn)) + 0(h3). 

Recall the definition of Q(tn) in (3-3). Each term on the right-hand side of the above 
equation is then expanded in a Taylor series about X(tj,), and this gives 

hf (Q(tn)) = hf (Q(t0)) + h'5 3fx(X(tj1)) 

(3-10) + 1h25pff( X(t 1))fxx(X(t,1)) + 1h232fxx(X(tj1)) 

+ 6h xx(X(tn)) + 0(h3). 
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Substituting this result into (3-7), we obtain, after some cancellations, 

X(t,+?) = X(tj) + AW(n) + hf(Q(tn)) 

?h'-5/fx(X(tn)) + 1h x~~x(t) (3-11) 2 X(tn)) 

+ h2,fxtn))fxx(X(tn)) 

2.5p If - Vj, + 0(h 3). + 1 h x xfx(X(tn))- Oh) 

Recalling the definitions of /3 and 0 in (3-4) and comparing this expression with 
(3-2), we can relate Vn and Rn by the equation 

(3-12) -R= -n + h25(2fffXX + 3 f~x) + 0(h3), 

where all the functions are evaluated at X(tn). Since Rn is of order 2.5 in the L2 
sense, so is Vn. However, it is still not clear how one is able to derive a Runge-Kutta 
method from the scheme (3-6), because it contains a second derivative of f with a 
coefficient containing 0 - /32. Fortunately, the Cauchy-Schwarz inequality yields the 
interesting relationship 

(3-13) (f AWsds} hJ AWjds, 

which implies that 0 - /p2 is nonnegative. Following this observation, (3-6) suggests 
the following Runge-Kutta method: 

p(n).=... 9 /32 

(3-14) Qf(n) X(n) + 1hf(X(n)) + h/ p, 

X (n+l = (n) + 'AW(n) + 2h[f(Q'(n) + hp(n)) + f(Q '(n _ Vh- p ) 

with 13 and 0 defined in (3-4). This scheme is obtained by a symmetry consideration 
so that we need to evaluate only one intermediate value, i.e., Q'(n) at each time step. 
We now state the main result of this section. 

THEOREM 1. Let f be a smooth function satisfying the condition stated in (2-9). Then 
the above scheme is second-order in the L2 sense, provided that the initial condition is 
imposed with second-order accuracy in the L2 sense. 

Note that, in Scheme (3-14), if we replace /3 by v/3, 0 by v20 and p(n) by vP(n), 
then we obtain the corresponding scheme (T) for solving Eq. (1-1). As v tends to 
zero, this scheme reduces to the ordinary mid-point Runge-Kutta method, as we 
would expect. Before we prove Theorem 1, we will analyze the local truncation error 

Tn of Scheme (3-14), which is defined by the equation 

X(tn+l) 
= 

X(tn) 
+ AW(n) 

(3-15) + -fl h [ + f(Q'(tn) + hp(n) ) + f (Q'(tn) _ -p(n))] _ Tn 

We start by considering the Taylor expansions 

f (Q'(t j) ? hp(n)) 

(3-16) A (Q'(tn)) ? P x )fx(Q'(tn)) 

+ 
, 
,+))2f0,x(Q((h 32(p(n))3f 2). 
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Recall the definition of Q'(t,). Further manipulation yields 

+h[f(Q(tn) + Jh p(n)) +f(Q (tn) - 
hplni)] 

= hf(Q'(ts,)) + {h2(P(n))2fXX(X(tn)) + Xh25f(Pfn))2fxxx(X(tn)) + 0(h3). 

Substituting the above result into (3-15), with p(n) defined in (3-14), we obtain 

X(tn+l) = X(tj,) + AWfn) + hf (Q(tn)) 

+ ?h2(6 - + 3(P))2fX(tn)) + h) (x(tn)) -n + 0(h3) 

By comparing this expression with (3-7) we can relate Tn and Jn by the equation 

(3-17) - = -Tn + h25(6 xx + 0(h3). 

As before, f~x, is evaluated at X(tn). Now we are ready to write down explicitly the 
local truncation error T of Scheme (3-14), since we have the relationship (3-12) 
between Rn and Vn and the relationship (3-17) between Vn and Tn. The result is 

(3.18) -Tn = h25{2(2y - )ff~x + 'fi7 + 6(T - 3/3 + 2I3n)fX~x} + h31', 

where -y, 8 and T are the random variables defined in (2-15), where Tn' is of order 
zero and all the functions are evaluated at X(tn). 

4. Convergence of the Second-Order Runge-Kutta Method (Scalar). In this section 
we prove Theorem 1. Let us write down the numerical scheme considered, 

(4-1) X(n1) = X(*) + AW(n) + 2h [ f (Q,(n) + rh?p(n)) + f (Q'(n) _ - p(n) 

and the exact equation with the local truncation error, 

(4-2) X(tn+l) = X(tn) + AW(n) 

(4 + h[f(Qj(t) + Jip(n)) f(Q(t p(n))] T 

Let en denote x(n) - X(t ). As in the theory of numerical solution of ordinary 
differential equations, we subtract Eq. (4-2) from Eq. (4-1). This gives 

(4-3) en+ en + 1 
hvn + Tnv 

where we define 

Vn Vn,?+ Vn,_ 

and 

v,1+=f (Q (t) ? /p(n)) - (Q,(n) + /P') 

To make an L2-norm analysis, we square both sides of (4-3) to get 

(4-4) e = e,2 + henvn + *h2v,2 + 2en1n + hvnT, + T 7. 

We now estimate the expectations of each term on the right-hand side of the above 
equation. By assumption, f satisfies a Lipschitz condition, 

f (x)-f(y) I < LIx-y , x,y E R, 

where L > 0 is a constant. Consider vn,+ and v,,,-. Recalling the definition (3-8) of 

Q'(t,,) and applying the Lipschitz condition on f, we obtain 

| | L Q(tn) - Q(n) | L(1 + IhL)Ie,1l. 
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Therefore, the second term on the right-hand side of (4-4) can be estimated as 

(4-5) IE(he1vn)) < hEJenVnp l<s hE(j en! I Vn,?++ vn, _) < 2hL(1 + 4hL)E(e 2). 

The estimation of the third term is similar, and we have 

(4-6) E( h V, ) ( h 2E( v) < h2L2(1 + L hL)2E(e2 ) 

Next comes the fourth term, where we need to take into account Tn given in (3-18), 
thus T,': 

(4-7) E(2ejTn) | = 2h0 E(enTn' ) I c< ehLE(en) + E1L-WhsE(Tn2) 

where we employ the inequality 2ab < a2 + b2 with a = (clhL)'/2en and b = 

(E hL) -/2h2 T,', and e, is an appropriate positive number. A similar trick can also 
be applied to the fifth term and yields 

(4-8) lE(hvnTn)IS {2 hL(I + 2hL)2 E[e2] + O(h6), 

where, again, c2 is an appropriate positive number. In this estimation we use the 
obvious fact that T, is 0(h5); actually one can show [4] 

(4-9) E(Tn2) <s E(Gn2)h5 + O(h6), 

where 

G2' 12f2+3 f? 11+ 
G- 40 230 X2 30340fXX.Y 

Finally we reach the stage of estimating the whole equation (4-4). By taking 
expectations on both sides of (4-4) and collecting the results from (4-5)-(4-9), we 
obtain 

(4-10) E(e,2+1) < B(h)E(en) + [E(G,2) + jE1L-E(1n2)] h5 + O(h6), 

where 

B(h) = 1 +(2 + c, + E2)hL +(2 + E2/2)h2L2 +(1 + ?E2)h3L3 + 1h4L4. 

To have a common bound for all time steps, for fixed h0 < 1, we define A 

maxflh~h()E(Gfl) and B--maxflh~ghE(Tn2), and set M=A + 4E;'L-'B. Then 
the inequality (4-10) becomes 

E(e 21) _< e(2+E)hLE(e 2) + Mh5 + O(h 6), 

where we choose '-Ic + c2 so that B(h) < e(2?e)hL. This is a recursive relation 
that we often encounter in the theory of numerical solution of ordinary differential 
equations. An elementary calculation shows 

(4-11) E(e2) 
(2 E) t, 

IMh4 + e(2+E)tLE(e 2) + O(h5). 

The right-hand side of this inequality is of order 4, provided that the initial 
condition is properly imposed. Suppose that E(e 2) < Co h4, where CO is a constant. 
Substituting this into the above equation and taking square roots, we complete the 
proof with [E(e 2)]'/2 < Ch2, where 

C (= sup (e(2+E)TL - 1) + Coe(2+?TL) + O(h)} [ 
h h(, (2 ? c)L 



STOCHASTIC DIFFERENTIAL EQUATIONS 533 

Remark. There are two reasons for introducing the two positive numbers -I and 
E2: to keep track of the "interaction" between T, and en (see (4-7)) or vn (see (4-8)), 
and to balance the error contributions from the initial error and local truncation 
errors (see (4-11)) in the hope that the constant C can be minimized with suitable 
choice of E, though we have not done so. 

5. Runge-Kutta Methods of Order One-and-One-Half (Scalar & System). There 
are two main difficulties with Scheme (3-14): the first is that we do not have an 
efficient way to sample systematically the Gaussian variables /3, AW(') and the 
non-Gaussian random variable 6 (see [15]), and the second is that it will not be a 
second-order method when applied to a system. 

To sample only Gaussian random variables, one must be content with schemes 
with less accuracy. In this section we provide such schemes, of order 1.5 in the L2 
sense. The main advantage with the schemes is that they will maintain the order of 
accuracy when extended to a system of stochastic differential equations. We consider 
the scheme (S) and prove the following theorem. 

THEOREM 2. Suppose that f has bounded partial derivatives up to fifth order. The 
scheme (S) is of order one-and-one-half in the L2 sense, provided that the initial 
condition is imposed with accuracy of order one-and-one-half. 

Proof. First, we consider the scalar case. There is no substantial difference 
between this proof and that of Theorem 1. We need only to check whether the 
technique used in the latter can be applied to this case. The key point is to examine 
the local truncation error of Scheme (S) for the scalar case, which is defined by the 
equation 

(5-1) x(tW f) = x(tQ) + X\tn + 4hX[f(Q(tn)) + 2 * f(Q*(tn))] -Tn 

where we define 

Q*(tn) = X(tn) + 2hf(X(tn)) + 342/3. 

To make an error analysis, we carry out the following Taylor expansion: 

hf (Q*(tn)) = hf(Q(tn) + 32?I3) 

- hf(Q(tn)) + 43h'5/fx(X(tJ)) + 9h2I32fxx(X(tn)) + 0(h25) 

- hf(Q(t )) + 4f (X(t ))ftn"h hAJWVds + 9h232fxx(X(tn)) + 0(h 25). 
tn 

Replacing f(Q*(tn)) in (5-1) by the above expression, we obtain 

X(tn+1) = X(tn) + AW(n) + hf(Q(tn)) 

+fx(X(tn))ftP|h I\'~ Wds + 3h2I32f~x(X(tn)) - Tn* + 0(h 25). 
Ptf 

Comparing the above expression with (3-2) and recalling the definition of 0 and that 

R,1 is of order 2.5, we arrive at 

=h2f xx(x(t ))(o - 3/32) + 0(h25). 

One major fact about Tn* is that its expectation is of order 3. The reason is that (i) 
the expectations of those terms of 2.5 are zero, and (ii) E[(/32)] = - and E(O) = 

which make the leading terms in Tn* cancel each other after taking expectations. 



534 - CHIEN-CHENG CHANG 

With this fact in mind, the rest of the proof proceeds exactly as in the proof of 
Theorem 1. Note that (T1*)2 is of order 4. The result is 

(2) 1 e(2e)TL - 1 D2h3 + e(2+)TLE(e2) + 0(h4), 
120 (2 + ) L 

where D2 maxflh ?h0E[fX2X(X(t l))I and E > 0 is defined in a similar way as in 
Theorem 1. L 

System Case. Via an elaboration, one can show that for the system case the 
corresponding local truncation error for the scheme (S), in component form, is 

(5-2) n = Ih 2 f k(X(t))(6Jk - 4Ipjk) + O(h25), 

where a subscript with a comma denotes differentiation, the summation convention 
is assumed, and the random variables f- { /3' } and 61k are defined as follows, 

(5-3) h' .5/3 J |=j 
+ h AjJk ds h 2Ok f h 

AWjsAWk ds 

in analogy with the definitions of /3 and 6 in (3-4). Since the components of a 
Wiener process are independent, E(Tn*i) is of order 3, due to the nonanticipating 
property. This is the key to the proof of Theorem 2 for both scalar equations and 
systems. Some work shows that the error is bounded by (see [4]) 

E(Ie2) 1 e(2? + E)TL-1 2( + 2 3 

(5-4) E( 240 (21d + E) L d( ) 

?e(2?+E)TLE(I|e0 12) + 0(h4), 

where D2 = max,,h 1< h( E [Ez,j k(Pfk(X(tn )))2 ]. This completes the proof of Theorem 
2. LI 

From the expression (5-4) we see that, if the initial error is sufficiently small, then 
for h = 0.01, Scheme (S) is practically of order 2 in the L2 sense. We conclude this 
section by indicating that the general idea in designing a scheme of order one-and- 
one-half, like Scheme (S), is to consider the family 

Q(n) = X(n) + 2h f (X(n) ) + keg 

(5-5) Q*(n) = Xfn) + {hf(X(n)) + j4h_ 
X(n+-) = X(n) + AW(n) + h [af(Q(n)) + bf(Q*(n))]X 

where a, b, k, I are parameters to be determined. In a similar way as we did in the 
proof of Theorem 2, we find that the exact solution of the stochastic differential 
equation (1-1) satisfies 

X(tn?1) = X(tn) + AW (') + h(a + b)f(Q(tn)) 

+h(a . k + b ) I/)Jf j(X(tn)) 

+ {h(a- k2 + b 12)/3J/3 kf -k(X(t)) -T*(n) + 0(h25). 

Now we make a choice so that a Taylor expansion of X(tn + 1) matches the right-hand 
side up to order 1.5 and find 

(5-6) a + b = 1, a k + b 1=1. 



STOCHASTIC DIFFERENTIAL EQUATIONS 535 

Then the local truncation errors T,* of the schemes in (5-5), in component form, are 

T71 = fh2jJk(X(tn))(Jk -(a k2 + b . /2)83k) + 0(h2.5). 

However, as follows from the proof of Theorem 2 (or 1), we may wish to minimize 
the contribution of the local truncation error Tn*l. One way to achieve this is to 
choose the parameters so that the expectations of the leading terms of T1* are zero 
(e.g., in (5-2)). This leads to 

(5-7) a k2 + b * 12 =2 

The case corresponding to Scheme (S) is a = -, b = 2, k = 0, 1/= 2, which is 
clearly a solution of Eqs. (5-6) and (5-7), but this choice is not essential. 

6. Variance Reduction Using Hermite Polynomials. In this section we consider a 
variance-reduction technique for evaluating expectations of functions of solutions of 
stochastic differential equations. Intrinsically, the numerical evaluation of expecta- 
tions involves a sampling process, i.e., Monte-Carlo computation. Being a finite 
process, Monte-Carlo computation creates statistical errors due to imperfect sam- 
pling. The errors depend heavily on how one choose the estimators. 

Our goal is thus to construct estimators with a small variance. We start by 
considering Chorin's variance reduction technique for evaluating functionals of 
Gaussian random variables. This technique exploits specific properties of the Hermite 
polynomials. Then we show how to implement Chorin's technique for functions of 
solutions of stochastic differential equations. 

Chorin's Estimator. Consider a random function g(t) = g(t', . . ., d), where 
t = ( d .,) is an R"-valued Gaussian random variable with distribution N(0, Id). 

The expectation of g(t) is 

E [g(t)] = E [g(1,. *,.ad)] = (27)-d/2f g(u)e-1U112/2 du, 

where u = (u1,..., ud), du = du' * dud, and we recall that Ilul is the 2-norm of u 
in the Rd space. The Gaussian random variable t can be readily sampled (see 
Section 7). The usual Monte-Carlo estimator for E[g(t)] is given by 

N N 

N -1 Y, g(t ) _ N-' E, g(t nd) 
J=1 J=1 

where { k } are drawn from the Gaussian distribution with mean 0 and variance 1. 
The standard deviation of this estimator, which yields the order of magnitude of the 
error, is 

(6-1) N -1/2 (E[g2(t)] _[Eg (t) ]2)1/2, 

which is proportional to N -1/2, thus may not be acceptable for reasonable size N. 
Hence, an estimator of E[g(t)] with smaller standard deviation is needed to achieve 
more accuracy in Monte-Carlo computation. 

Chorin [5] proposed a method to obtain an estimator for obtaining E[g(t)] with a 
substantial reduction in standard deviation. The idea is to use a finite Hermite series 
for the goal function g to design an estimator of control variate type for E[g(t)]. 
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The set of Hermite polynomials 

- (1)nez2/2 dn z2/2 
Hn ( Z ) = g; e dZn/ e - 2/ n = 1,) 2, ....I 

form a family of orthonormal functions in the space L2(R) of square integrable 
functions defined on R with respect to the weight e -/2/ 27. That is, 

(27 )-1/2 Hn (z)Hm (z)eZ2 /2dZ = nm. 

In general, let m = (mII..., Imd) with mJ nonnegative integers, and set Iml = ml 
+ + mi. We define the product polynomials 

Hm= H(ml md)(U) = Hm(Ul)* Hmd(ud). 

Then the family of functions 

(6-2) Hm(U) . e-11u112/2 0 < Iml < x, 

forms a complete orthonormal set in the space L2(Rd) of all square integrable 
functions defined on Rd with respect to the weight (27T)-d/2e_ 11,12 /2. For a more 
detailed analysis of the family of Hermite polynomials Hm, see Chorin [8], Maltz 
and Hitzl [17]. Assuming that the function g(u)e _lUh /2 is square integrable, we can 
expand it in terms of the orthonormal functions in (6-2): 

g(u)e_ 11U112/2 = E amHm(u)e- 1u112/2 

i.e., 

g(u) = E amHm(u), 
m 

where we have 

(6-3) am = E[Hm(t)g(t)] = (2q7)-d/2f Hm(u)g(u) eIUII2/2 du 

because of the orthonormality 

E[Hn(A)Hm(0)i = E [(Hn, d)HM,1 ,m()] = nm = 8nlm1,...,ndmd. 

We also notice that (i) a0 = E[g(t)] and (ii) E[Hm(t)] = 0 if m + 0. Therefore, 

(6-4) E[g(t)] = bo + E g(t) - E bmHm(t) 

for any set of numbers { bm } and p. In actual computation, we will take { bm } to be 
{ am}. The success of Chorin's variance reduction lies in the fact that this identity 
does not imply that the Monte-Carlo estimators on both sides will have the same 
standard deviations. Chorin's idea is to make a first sampling to determine the 
coefficients bm in (6-4) according to the formula (6-3), then a second sampling to 
simulate the Gaussian variables that appear in the argument of g and the 
polynomials Hm = Hmi eMd on the right-hand side of (6-4). Specifically, we have 

IN 
(6-5) am= Z (Hm(tj)g(tj)) 

j=I 
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and 

(6-6) a* + g()- E aHm('J) 

where tj= { } and = {)} are two sets of independent samples drawn from the 
Gaussian distribution with mean 0 and variance 1. The formulas (6-5) and (6-6) are 
called Chorin's estimator for E[g(t)]. In order to see the standard deviation of 
Chorin's estimator, let us define the remainder 

(6-7) rp(u) = g(u) - L amHm(u). 
Imi'<pi 

Maltz and Hitzl [17] have shown that Chorin's estimator has the following standard 
deviation: 

1/2 

(6-8) N-1/2 Ellrp 12+ N-' E 2 

where am2 is the variance of a* in (6-5) with N = 1, i.e., the single sample variance 
for the Monte-Carlo estimate of a m. Note that E rp 2 and a2 are complementary in 
the sense that as IPI increases the former goes up while the latter goes down. For each 
N, an optimum p could be determined. See Maltz and Hitzl [17] for a detailed 
discussion. 

Partial Variance Reduction. Let 4 be a sufficiently smooth function. We imple- 
ment Chorin's variance reduction technique to evaluate the expectation E[O(X(n))] 
where x(n) is a numerical solution of the d-dimensional version of (2-1). Replace 
AW (n) by rh a(n); then the methods that we consider in this paper have the form 

(6-9) X(n+l) = X(n) + do a(n) + h*(n) 

We note that f3(n) is included in I(n) except in Euler's method, so that Xfn), thus 
4(X(n)), is a function of the n pairs of R"-valued Gaussian random variables a (k), 

(k), 0 < k < n, since we implement the scheme (6-9) n + 1 times. That is, O(X(n)) 
is a function of 2 . (n + 1) . d (scalar) Gaussian random variables. Therefore, it 
would be too expensive, even if the variance technique considered in the previous 
section were applied only once to all these Gaussian variables to evaluate the 
expectation [+(X(4))]. Instead, we wish to do only partial variance reduction, i.e., to 
determine an expression for E[4,(X(n+1))] with certain distinguished Gaussian 
variables, and apply Chorin's variance reduction technique to them only. First, we 
observe that 

(6-10) 4(X(l+ l)) = ((X(n) + a (n) + h4(n)) 
= <)(X(?) + [a(O) + . . +0(n)] + h[4'(0) + ++(n)])) 

from which we see that the accumulating random variable a(O) + +.. (n) plays a 
major role in determining (X(nX + 1)), while the individual a(k), 0 < k < n, play only 
a minor role. Hence, the obvious strategy is to apply Chorin's estimator to evaluate 
E[4(X(X'))] at each time step with respect to a(?) + _.. + a(n) only. The main 
drawbacks with this strategy are (i) that variance reduction is only done with respect 
to (a(?) + ..)+ and (ii) that there is no connection between two successive 
evaluations E[4(X(n))] and E[4(X(n+'))]. To improve this variance reduction 
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technique and 'link' { E[ (X(n))]}, we write 

(X(n+ l)) = [O(X(n+l)) - (X(n) 

+ * + [V(X(k+l)) - p(X(k))] + ... +O(X(.)) 

For each piece 4 (X(k + l)) - p(X(k)), we carry out the Taylor expansion of fk(X(k l)) 

about X(k): 

>(X(k-+l)) - O(X(k)) = t, (X(k))[fiicO(k) + h (k) )]J 

+ 2h?kJ(X(k))a(k)Ja(k)I + 0(hl.5), 

where ao(k) = { a (k)i } is the random variable sampled at the kth time step. Moving 
the first term on the right-hand side to the left and denoting the resultant expression 
by ?(kD) we have 

61 
(k) = k (X(k+1)) - k(X(k)) - Vh J(X(k))a(k)J 

= h' (X(k))I(k)j + {ho11, (X(k))a(k)ja(k)I + 0(h' 5). 

Note the independence between a(k) and X(k). Taking expectations on both sides of 
the first equality in (6-11) and summing the results over k from 0 to n, we have 

(6-12) E [O(X(n+))] = E [?(n)] + ... +?E[O()] + E ['(X(o))], 

which is equivalent to 

(6-13) E-[O(Xfn+I)] = E[O(Xfn)] + E[I40(n)]. 

Thus we obtain a recursive relation between E[4(X(n))] and E[4,(X(n,'))]. From 
the second equality of (6-11) we see that for each fixed k, a(k) plays a leading role in 
determining ? (k). By a similar argument, following (6-10), one can easily see that 
t(0) + ... +a(k1-) plays a major role in determining OkJ(X(k)) and p)Jk(X(k)). 
Hence we have the following 

Strategy (S): We evaluate the expectation E[4,(X(n))] by applying Chorin's 
estimator (6-5, 6) to evaluate E[4O(n)] in (6-13) with respect to a (n) and 
(a(0) + . . . + a(n))/ F4 (normalized N(O, Id)), where ?(n) is computed according to 
the first equality in (6-11), and adding the result to the estimate of E[4(X(n))] 
obtained from the previous time step. 

To see how the standard deviation, at each time step, of the estimate in Strategy 
(S) will accumulate, and whether this accumulation will destroy the accuracy of the 
variance reduction, we need the following lemma. 

LEMMA. Let z1, Z2 ... ) Zn be n random variables; then their variances and the 
variance of their sum satisfy the inequality Z [uZ + *. +uz ]2. Hence, by 
the Cauchy-Schwarz inequality, we have u2+ . n n[ 2 + **+G. 

From the second equality in (6-11) we may write ?(k) = hG(k) for each fixed k, 
where G(k) is of order zero. Then from (6-8) we see that the standard deviation 
SD(k) of Chorin's estimator for each E[ (k)] is of order 

S[Erptt2 + 1 L 1/2 
(6-14) h -SD (k) = 

h* 
- 

IE_ 
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for some p, where rp is defined similar to (6-7), with g = G(k), and where we 
suppress the dependence of rm on k. Let the maximum of (6-14) over k be SD(ko) 
for some ko; then by the lemma we have the bound n hSD(ko) - t SD (ko) for the 
estimate in Strategy (S). Hence we have 

THEOREM 3. The standard deviation of the estimator in Strategy (S) for evaluating 
E[p(X(nt))] with N samplings is of the form (6-8), which is proportional to t. at the nth 
step, i.e., the piecewise application of Chorin's variance reduction technique to each 
summand in (6-12), produces a standard deviation as in (6-8). 

7. Numerical Implementation. In order to compare their accuracy, we implement 
the schemes (E) and (S) given in the introduction. We present two two-dimensional 
examples: one is a linear equation, and the other is nonlinear. Recall that we 
assumed boundedness on f and its first few partial derivatives in Theorems 1 and 2. 
However, it is clear that these theorems still hold if f satisfies a Lipschitz condition 
and all the expectations appearing in the proofs are uniformly bounded in the L2 
sense. Our first test equation satisfies this less restricted condition, while it is also 
interesting to observe the numerical results for the second test equation. 

As in (6-9), for each time step, we set AW = Vh a. To simulate the Gaussian 
random variables al and L in Euler's method and Scheme (S), we write 

ot, f3= + 6 I' 

where t and a are two independent R"-valued Gaussian variables with distribution 
N(O, Id). These expressions give the correct correlation between a and P3. Then t and 
N are sampled according to the Box-Muller formula 

I = cos(27Tu') [-2 log(vl)] /2, ' = sin(2 T u') [-2 log( v' ]1/2, 

where u and v are two independent RK-valued uniform distributions over [0, 1]d. For 
different time steps, we sample independent pairs (u, v}. 

Our first computational example is the 2 X 2 system of linear equations 

dX1 = -X2dt ? dry1, dX2 = -Xdt ? dW2 

with zero initial data X1(0) = X2(0) = 0. Adding these equations together, we find 
upon integration 

Xl(t) + X2(t) = I e(t2s)d(JVl + ) 

which, for each fixed t, is a Gaussian random variable with mean 0 and variance 
1 - exp(-2t). In this example, we evaluate numerically 

E[cos(Xl(t) + X2(t))] = exp((1 - e-2t)). 

The second computational example is the 2 X 2 system of nonlinear equations 

dX1 = -e -(X1?+ X2) dt + dIV dX2 = e-X1+X2) dt + dW2 

with the zero initial data X1(0) = X2(0) = 0. By a calculation we obtain 

e(XI(t)+X2(t)) e(W w2)(1 + fte (W? + W2) ds). 
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In this example, we evaluate numerically 

E [e(XI(t)+x2(t)) = 2et - 1. 

For each scheme we compute the expectations in two ways: (i) the usual Monte-Carlo 
estimator, and (ii) Chorin's estimator in Strategy (S) of Section 6. The errors depend 
on the time stepsize At and the number of simulations, N, for which we use 10000. 

TABLES 7.1-7.3 

Numerical results for E [cos( XI(t) + X2( t))], errors/standard 
deviations are in exponential form. 

TABLE 7.1 

Example 1: t = 0.2 N = 10,000 Exact Value = 0.8480 

A t Euler's Method Scheme (S) 
0.2000 -2.85-2/2.33-3 -2.92-2/2.16-4 2.77-3/1.96-3 2.31-3/1.67-4 
0.1000 -1.50-2/2.14-3 -1.36-2/5.15-4 -7.32-4/1.97-3 5.26-4/3.86-4 
0.0500 -8.46-3/2.09-3 -6.66-3/2.21-4 -1.70-3/2.01-3 3.28-5/1.89-4 
0.0250 -3.87-3/2.05-3 -3.07-3/1.73-4 -5.74-4/2.01-3 1.83-4/1.80-4 
0.0125 6.15-4/2.00-3 -1.56-3/2.25-4 2.22-3/1.98-3 4.46-5/2.64-4 

TABLE 7.2 

Example 1: t =- 0.4 N = 10,000 Exact Value 0.7593 

A t Euler's method Scheme (S) 
0.2000 -4.14-2/3.39-3 -3.88-2/1.55-3 6.83-4/1.18-2 2.88-3/2.24-3 
0.1000 -2.10-2/3.22-3 -1.87-2/7.56-4 -1.85-3/2.96-3 3.05-4/1.17-3 
0.0500 -9.16-3 /3.14-3 -8.52-3 /5.00-4 -6.40-5/3.04-3 4.80-4/5.48-4 
0.0250 -7.54-4/3.03-3 -4.52-3/7.08-4 3.67-3/2.98-3 -6.60-5/7.07-4 
0.0125 5.67-4/3.01-3 -2.22-3 7.62-4 2.71-3 2.98-3 -2.87-5/7.58-4 

TABLE 7.3 

Example 1: t 0.8 N = 10,000 Exact value = 0.6710 
A t Euler's Method Scheme (S) 

0.2000 -4.40-2/4.28-3 -4.20-2/2.29-3 1.96-2/3.88-3 1.80-2/1.79-3 
0.1000 -1.79-2/4.13-3 -1.88-2/1.07-3 2.29-3/3.94-4 1.25-3/1.21-3 
0.0500 -4.57-3/3.91-3 -1.08-2/1.92-3 5.26-3/3.86-4 -9.18-4/1.89-3 
0.0250 -1.00-3 /3.91-3 -5.24-3/2.44-3 3.69-3 3.87-3 -3.57-4/2.11-3 
0.0125 1.57-33.87-3 -2.36-3 2.20-3 3.94-3 3.85-3 5.7-5 /2.18-3 
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TABLES 7.4-7.6 
Numerical results for E[exp(X1(t) + X2(t))], errors/standard 
deviations are in exponential form. 

TABLE 7.4 

Example 2: t = 0.2 N = 10,000 T = 1.4428 

A t Euler's method Scheme (S) 
0.2000 1.68-1/1.30-2 1.58-1/3.24-4 -3.13-3/1.00-2 -1.08-2/9.49-4 
0.1000 7.72-3/1.13-2 6.96-2/1.19-3 3.14-3/1.01-2 -3.63-3/8.35-4 

0.0500 3.97-2/1.07-2 3.29-2/9.63-4 5.37-3/1.02-2 -1.18-3/2.20-4 
0.0250 2.12-2/1.04-2 1.62-2/1.17-3 4.77-3/1.01-2 -2.38-4/1.12-3 
0.0125 1.73-2/1.03-2 7.91-3/1.22-3 9.17-3/1.02-2 3.14-4/1.20-3 

TABLE 7.5 

Example 2: t = 0.4 N = 10,000 T = 1.9836 

A t Euler's method Schene (S) 
0.2000 3.52-1 2.76-2 3.34-1 7.51-3 -7.94-3/2.18-2 -2.23-2/5.84-3 
0.1000 1.67-1/2.44-2 1.45-1/3.90-3 1.17-2/1.96-2 -7.97-3/3.32-3 
0.0500 7.80-2/2.26-2 6.99-2/4.71-3 6.79-3/2.16-2 -1.41-3/4.44-3 
0.0250 5.12-2/2.25-2 3.39-2/4.85-3 1.66-2/2.20-2 -1.06-3/4.72-3 
0.0125 6.97-3/2.21-2 1.61-2/4.79-3 9.46-3/2.19-2 -8.97-4/4.73-3 

TABLE 7.6 

Example 2: t = 0.8 N = 10,000 T = 3.4511 

_A t Euler's method Schemne (S) 
0.2000 8.16-1/6.34-2 7.45-1/2.65-2 4.90-3/6.70-2 -5.24-2/2.12-2 
0.1000 3.46-2/6.76-2 3.37-1/2.66-2 -1.04-3/6.33-2 1.17-2/2.41-2 
0.0500 1.98-1 /6.92-2 1.62-1/2.65-2 3.61-2 /6.61-2 -4.15-3 /2.47-2 
0.0250 5.12-2/6.88-2 7.38-2/2.53-2 -2.54-2/6.74-2 -4.86-3/2.47-2 

0.0125 -6.27-3/6.11-2 3.28-2/2.53-2 -4.37-2 6.44-2 2.01-3/2.502 

The situation is shown in Tables 7.1-7.6. In each table, we list the results at time 0.2, 
0.4, and 0.8. For each scheme, in the first subcolumn we list the errors plus the 
standard deviations of the computed values obtained by using the usual Monte-Carlo 
estimator, and in the second column errors are listed for Chorin's estimator. We see 
that Chorin's estimator shows Euler's method to be precisely a first-order method. 
For Scheme (S), Chorin's estimator shows that they are roughly second-order 
methods. This is not surprising, because we are evaluating expectations of functions, 
which should not exhibit the 'half' part of the order of the accuracy of the scheme, 
due to the nonanticipating property of the solutions. 
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